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Abstract. A sub-wavelength particle with a total scattering cross section that
exceeds the single channel limit is referred to as a superscatterer, which can
provide ability to control light in nanoscale. A variety of superscatter structures
have been suggested, most of them are typically constructed with strong forward
scattering but minor backscattering. This unusual behavior can be attributed to
the superposition of resonant modes in adjacent angular momentum channels. We
reveal the mechanism of super backscattering for subwavelength column, which
can be formed by recombining non-adjacent resonant modes, as confirmed by our
numerical analysis.
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1. Introduction

The scattering of light by small particles is a fundamen-
tal problem in modern optics, dating back to Rayleigh’s
work on atmospheric scattering.1,2 The strength of
the light-matter interaction is usually characterized by
the scattering cross section. In general, small parti-
cles respond weakly to electromagnetic waves in the
long-wave limit, possessing a scattering cross section
proportional to λ−4, where λ is the wavelength.3 Thus
enhanced light-matter interactions are desired for a va-
riety of sub-wavelength photonics applications, such
as imaging,4,5 sensing,6,7 heat transfer,8 etc. Fortu-
nately, a small object can produce a large optical re-
sponse far in excess of Rayleigh scattering when reso-
nant scattering occurs, for which it tends to exhibit a
total scattering cross section that does not exceed the
single-channel limit. A sub-wavelength particle with
a total scattering cross section that exceeds the single
channel limit is referred to as superscatterer,9,10 imply-
ing stronger light-matter coupling, and has attracted
immense attention due to its considerable potential of
controlling light.

Superscattering engineering, which optimizes the
maximum scattering cross section by designing the
particle structure while preserving energy conserva-
tion and central symmetry, has been experimentally
realized in various of systems such as microwaves,11

acoustic waves,12 and water waves13 since its intro-
duction. However, the development of superscatter-
ing focuses on the enhancement of the total scattering
cross section while ignoring other scattering character-
istics. Recently, various of structures for superscat-
terer have been proposed,11,14–16 but most of which
are typically constructed with negligible backscatter-
ing, in sharp contrast to its significant forward scat-
tering, which limits further applications. The mainly
proven capability of superscatterer is protecting the
objects behind it off scattering.13

Backscattering is an important property used to
characterize the electromagnetic properties of objects
and is particularly concerned in the fields of antennas,
radar, communication, sensing, etc.17–19 Various
retroreflective structures have been designed to have
strong angle-insensitive backscattering capabilities
such as corner reflectors, Luneberg lenses and
metasurface,20,21 which are used for a variety of
applications such as radar targets or communication
antennas in different fields. However, these structures
usually have bulky over-wavelength profiles and
cannot operate at sub-wavelengths. Therefore, the
development of a sub-wavelength retroreflector based
on the super-scattering mechanism will pave the
way for the realization of flexible scattering feature
engineering as well as high-sensitivity sensing.

The implementation of strong backscattering

through the design of scatterers has recently been
discussed. For instance, dielectric shell structures are
used to enhance backward scattering in some previous
works, which is achieved by combining an electric and
a magnetic multipole resonance.22–24 However, this
method is limited to the combination of two modes
and fails in the two-dimensional case.

In this work, we reexamine this ignored phe-
nomenon in a 2D rotational symmetric superscatter-
ing system and find that this unusual behavior can be
attributed to the superposition of resonant modes in
adjacent angular momentum channels. In the process,
we outline a general perspective on the inherent rela-
tionship between the forward and backward scattering
and mode combinations and confirm that the presently
designed superscatterrs exhibit trivial backscattering
characteristics. We show that backscattering can be
enhanced in quadratic form depending on the number
of properly overlapped modes, and it can be shown
that backward scattering is maximized for a given num-
ber of resonant modes. In principle, arbitrarily large
backscattering can be achieved depending on the spe-
cific design of the superscatterer. Specifically, we will
demonstrate enhancing backscatter beyond the reach
of single channel by combining three nonadjacent reso-
nant modes in a simple model, i.e., super backscatter-
ing.

2. Theory

In this study, the two-dimensional case of scatterers
with rotational symmetry is investigated, which can
be analyzed using the Mie scattering theory.3 When
a H-polarized plane wave (with the magnetic field
only along the z direction) of angular frequency ω
incident upon an obstacle located at the origin, the
total magnetic field in the air region can be expressed
in polar coordinates (r, φ) as9,25

Hz = H0

∑
m

[
imJm(kr) + imSmH(1)

m (kr)
]
eimφ, (1)

where the time dependence is considered as exp(−iωt).
The first term in above formula refers to the incident
field, where k is the wave number in the air. Here
Jm(kr) is the m-order Bessel function of the first kind,

H
(1)
m (kr) is the m-order Hankel function of the first

kind, and the scattering coefficient Sm corresponds to
the strength of the scattered field in the m-th angular
momentum channel. H0 is the amplitude of incident
wave.

Using the definition of the cylinder function,
equation (1) can be reformulated as

Hz = H0

∑
m

[
im

2
H(2)

m (kr) +
1 + 2Sm

2
imH(1)

m (kr)
]
eimφ. (2)
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Note that the incoming wave in the m-th channel is

represented by im

2 H
(2)
m (kr), while the outgoing wave

becomes 1+2Sm

2 imH
(1)
m (kr). Thus, the range of Sm is

restricted by the conservation of energy and angular
momentum, namely

∣∣ 1+2Sm

2

∣∣ ≤
∣∣ 1
2

∣∣ (as indicated in
figure 1). The equal sign here holds when the material
is lossless.

Figure 1. The value of Sm in the complex plane. The blue
circle represents the trajectory of Sm (marked in red dot).

For such a scatterer, the total scattering cross
section can be expressed in terms of Sm:

Qsc =
2λ

π

∑
m

|Sm|2, (3)

with a maximum scattering cross section in m-th
channel when Sm = −1. In fact, it can be verified
that this corresponds to the bound state of the system.
Furthermore, the differential scattering cross section is
given by

σ(φ) =
λ

2π
lim
r→∞

kr

∣∣∣∣∣∑
m

imSmH(1)
m (kr)eimφ

∣∣∣∣∣
2

, (4)

with σ(0) and σ(π) corresponding to forward and back-
ward scattering, respectively. With the well-known

asymptotic formula H
(1)
m (x) ∼

√
2
πxe

i(x−mπ/2−π/4) at

x → ∞, σ(φ) becomes

σ(φ) =
λ

π2

∣∣∣∣∣∑
m

Smeimφ

∣∣∣∣∣
2

. (5)

Generally, in subwavelength objects, the angular
momentum channels without resonance has a really
small contribution to the scattering cross section.
Meanwhile, apart from the fact that dipole moments
are more easily induced by external fields for m = 1,
higher order resonant modes only exhibit a significantly
narrow linewidth. As a consequence, Sm = −1
only occurs at resonance in subwavelength system,
while Sm rapidly approaches zero and negligibly
contributes to σ(φ) when detuning. Hence equation
(5) can be simplified as σ(0) ≈ λ

π2

∑
n 1 and

σ(π) ≈ λ
π2 |

∑
n(−1)n|2 for forward and backward

scattering, respectively, where n takes only the
resonant modes. Furthermore, it is noted that the

total scattering cross-section can be estimated using
forward scattering for subwavelength superscatterers:
Qsc ≈ 2

√
λσ(0), implying a positive correlation.

As a result, when different resonant modes of
the superscatterer are combined with each other,
forward scattering is always enhanced, while backward
scattering presents a cancellation for the case of
two adjacent channels overlap. Thus, it is again
verified that the previously constructed superscatterer
by sequential resonance mode superposition has a
trivial backscattering property not exceeding that of
the unusual scatterer. In the other hand, super
backscattering can be achieved through superposition
of modes where m is odd (even) with a backscattering
cross section proportional to the square of the number
of participating modes. This approach allows the
backward scattering to be significantly enhanced
without altering the forward and total scattering cross
sections.
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Figure 2. Relationship between the value of the scattering
coefficient and the angular distribution of scattering. (a)
Maximum forward scattering. (b) Maximum backward
scattering but physically impossible. (c) Maximum physically
allowed backward scattering. An interactive version of how σ(ϕ)
depends on the scattering coefficient is available as a HTML
document.

In fact, equation (5) is exactly the form of a
Fourier series, and its coefficient values are limited by
the conservation of energy and angular momentum.
Conventional superscattering studies increase the total
scattering cross section by constructing resonance in
a continuous angular momentum channel, which will
result in a scattering angle distribution approaching a
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delta function form δ(φ). This explains the vanishing
backward scattering of the superscatterer as shown
in figure 2(a). Whereas the component of backward
scattering comes from the shifted delta function δ(φ−
π), which can be viewed as a limit of

∑
m e−imπeimφ.

Such a series of the scattering coefficient gives strong
backward scattering as shown in figure 2(b), but is
physically impossible. To conform to the range of
scattering coefficients, the series e−imπ are shifted and
scaled to transform into the circle in the complex
plane as Sm = 1

2e
−imπ − 1

2 , obtaining maximum
backward scattering in a finite angular momentum
channel (figure 2(c)). Note that this is consistent with
the scattering coefficient obtained from the previous
derivation, providing a maximum backward scattering
in the finite resonant angular momentum channel. The
latter term in the scattering coefficient comes from
translation in the complex plane, which contributes
a forward scattering cross section comparable to the
backward scattering. Consequently, there is a trade-
off between the back-to-front ratio and the backward
scattering cross section of the superscatterer.

3. Model and Results

Plasmonic material

Inductive metasurface

Incident wave

Figure 3. Schematic of H-polarized plane waves impinges
on the nanorod. The scatterer is a plasmonic column with a
relative permittivity of εp and a radius a, covered by a inductive
metasurface with impedance Zs.

Due to the tendency of resonant modes in
high angular momentum channels to obtain higher
eigenfrequencies, the difficulty of super backscattering
is to combine non-adjacent modes while avoiding
overlapping intermediate modes. Here, we introduce
a minimal model to illustrate the procedure of
maximizing backscatter. The structure is sketched
in the figure 3, which is a plasmonic nanorod with
a radius a, covered by a inductive metasurface with
surface impedance quantified by Zs. Here the relative
permittivity of the plasmonic material is described by
the Drude model written as εp = (1 − ω2

p/ω
2), where

ωp is the plasma frequency. The boundary conditions
thus are modified as follows:

Hz(r)|r=a+ −Hz(r)|r=a− = −Eφ(r)

Zs
|r=a+ , (6)

Eφ(r)|r=a+ = Eφ(r)|r=a− . (7)

In fact, the bound state of the scatterer originates
from the surface plasma wave.26 Therefore, the
interface impedance changes the energy-momentum
dispersion of the surface wave, and thus the resonant
frequency. To illustrate this correlation, the modified
surface waves dispersion relation (blue solid lines)
and corresponding structural resonance (red dots
for frequency and dark blue bars for linewidth) of
plasmonic nanorod covered with a metasurface are
shown in figure 4, where the plasma frequency is
selected as ωp = 0.5c/a. Here k∥ is the surface
wave propagation constant at the interface. One can
observe that the resonant frequencies is exactly the
eigenmodes where k∥ in the photonic band is an integer
multiple of a−1. For contrast, the primary dispersion
relationship of the plasma-air interface is also depicted
in figure 4 as orange dashed line. It can be shown that
inductive surface impedance (Im(Zs) > 0) suppresses
the frequency of plasma surface waves at higher
transverse wave numbers, resulting in overlapping
resonant peaks, which is also the case for the covering
of a thin dielectric layer.

The extremely narrow linewidth can also be
seen in figure 4(b), which illustrates the variation of
|Sm|2 with frequency corresponding to different m,
guaranteeing a negligible contribution from the angular
momentum channel deviating from resonance. In
this model, the resonance modes in different angular
momentum channels exhibit distinct radial profile.
The higher order modes undergo more pronounced
perturbation and frequency reduction, owing to their
stronger localization at the interface. This leads to
the establishment of a non-monotonic surface wave
dispersion relation, which enables superimposition of
non-adjacent modes without experiencing interference
from intermediate mode.

To further demonstrate the interplay between
backscattering and mode superposition, we con-
structed two scatterers by altering different surface
impedance. The impedance of the metasurface is set as
Zs = 102 iZ0 in figure 4(a), leading to superscattering
at frequency ω = 0.34492 c/a by superposition of m =
±1,±2,±3 modes. Here, Z0 is the wave impedance
in the free space. In contrast, superscattering involv-
ing angular momentum channels of m = ±1,±3,±5 at
a frequency of about ω = 0.35076 c/a with a surface
impedance of Zs = 533.5 iZ0 is shown in figure 4(c).
The far-field scattering patterns of these two different
superscatterers are shown in figure 5. Both two su-
perscatterers exhibit similar total scattering section,
but show a dramatic difference in backward scattering.
Although due to the slight deviation between dipole
modes and other modes, as shown in figures 4(b) and
4(d), the scattering cross section blow the ideal case,
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Figure 4. Manipulate the resonant frequency through the dispersion relation of surface waves. (a) The influence of inductive
metasurface on the dispersion relation of surface waves and the corresponding structural resonant frequency, where the metasurface
provides a surface impedance of Zs = 102iZ0. Resonance occurs when the surface wave propagation constant k∥ is an integer

multiple of a−1, and the red dots and the bars correspond to the resonant frequency and the linewidth, respectively. The black
line emphasizes the frequency at which superscattering occurs (ω = 0.34492 c/a), and the modes involved in the superposition are
indicated by arrows. And (b) shows the scattering coefficients from individual channels. (c) Same as (a), but with the surface
impedance tuned to Zs = 533.5 iZ0 and superscattering achieved by superposition of modes with m = ±1,±3,±5 instead. The
superscattering in (c) presents at a frequency about ω = 0.35076 c/a. (d) The scattering coefficients corresponds to the case in (c).

the aforementioned influence of mode superposition on
backscattering is still valid. In figure 5(a), the m = ±2
and m = ±3 channels cancel out for forward scat-
tering, leaving only the contribution of the m = ±1
mode, resulting in a scattering cross section σ(0) of
about 4λ/π2. For the case of odd mode superposition,
as shown in figure 5(b), as expected, it is observed
that backscattering appears to be enhanced as much
as forward scattering, suggesting super backscattering.
Backward scattering in this case reaches 29.43 times
the single-channel scattering limit (ideally up to 36
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Figure 5. Far-field scattering patterns of two different
superscatterers compared to a perfect electrical conductor (red
line). The radial length represents the magnitude of cross
section per azimuthal angle, which is in unit of λ/π2. Both
two superscatterers exhibit similar forward scattering, but
dramatically different backward scattering. (a) The blue curve
depicts the scattering pattern of superscatterer at a frequency
of ω = 0.34492 c/a, which is composed of m = ±1,±2,±3
resonance modes, corresponding to the condition in figure 4(a).
(b) The combination of m = ±1,±3,±5 angular momentum
channels corresponds to the situation in figure 4(c). The working
frequency is about ω = 0.35076 c/a.

times), and 7.35 times the strongest backward scatter-
ing in ordinary superscatterers. In addition, we calcu-
lated that Qsc = 5.60(2λ/π) ≈ 2

√
λσ(0) = 5.63(2λ/π)

for figure 5(a), and Qsc = 5.34(2λ/π) ≈ 2
√

λσ(0) =
5.42(2λ/π) for figure 5(b), verifying the correlation be-
tween the total scattering cross-section and the forward
scattering cross-section.

In fact, there is no theoretical limitation prevent-
ing further superposition of modes to continue improv-
ing reflectivity. For a multi-channel resonant degen-
erate scatterer, the radial field distributions of the in-
dividual modes are different. Thus, through the de-
sign of radial material parameter distributions, differ-
ent modes can be perturbed differently, resulting in
a specific modes combination design. However, the
sensitivity of parameter perturbations and losses may
make make it difficult to assemble such scatterers with
highly degenerate modes. Therefore, exploring the use
of low-loss artificial materials such as spoof surface
plasmon,27,28 additional resonance mechanisms such as
phonon polariton,29 and anisotropic materials such as
hyperbolic media will be the future research direction
of superscattering.15,16

The near-field distribution of scattering problems
provides another perspective, as presented in figure 6.
The field strength distribution in the near-field region
does not exhibit the same scattering angle distribution
characteristics as the far field. Typical superscatters
commonly create large shadow behind the structure,
and the shadow is much larger that the physical size
of the particle, consistent with Figs. 6(a) and 6(b).
Therefore, the superscatter is capable of protecting the
objects behind it against scattering. This is due to the
fact that the forward-scattered wave coherently cancels
with the incident plane wave at a few wavelengths from
the scatterer. However, forward scattering does not
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Figure 6. |Hz | profile of plane waves incident from the
left to three different scatterers, which is normalized by the
amplitude of the incident wave. (a) Typical superscatter with
m = ±1,±2,±3 modes superposition, as depicted in figure 4(a).
(b) Superscatter with strong backscattering, for the combination
of m = ±1,±3,±5 modes, corresponds to the situation in
figure 4(c). (c) The perfect electrical conductor acts as a
scatterer.

contribute to the focusing of electromagnetic waves.
This is enabled by super backscattering as shown in
figure 6(b), where the reflection and incident waves are
enhanced by superposition, hence more versatile appli-
cation potential.

4. Conclusion

In summary, in subwavelength superscatterers, only
the angular momentum channel supporting the
resonance contributes to the scattering cross section,
so we can analyze the directionality of such a system.

We found a positive correlation between forward
scattering and total scattering cross section, implying
the contribution of any resonance modes will enhance
forward scattering. As a contrast, backscattering
cancels out in the superposition of resonant modes of
adjacent angular momentum channels. To overcome
this, we revealed that backscattering can be enhanced
by artificially selecting odd (even) angular momentum
resonance for superposition without changing the
total scattering cross section, yielding a new degree
of freedom in the design of scattering properties.
A considerable strong backscattering exceeding the
single-channel limit was achieved by combining non-
adjacent modes induced by the specifically designed
non-monotonic dispersion of surface waves, verifying
the validity of the method. Also, this can be further
enhanced in quadratic form depending on the number
of overlapping modes through a particular design.

Furthermore, it should be noted that there
are works that have implemented superscattering in
other ways.30,31 These explorations have expanded
the original definition of superscattering, resulting
in the disruption of rotational symmetry or energy
conservation, making it possible to achieve super
backscattering under specific conditions. Moreover, it
is well known that the subwavelength antennas with
specific designs can exhibit strong backscattering, but
only works for incoming waves in specific directions
to the distortion of rotational symmetry. Our
approach is based on rigorous analysis when angular
momentum and energy conservation, providing an
isotropic strong backscattering. In general, this
method is also effective for other structures with
rotational symmetry. Our work not only offers a
deeper perspective for the fundamental understanding
of electromagnetic superscattering, but also provides a
concrete route to control scattering characteristics for
potential applications in nanoscale.
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